Computer Use Changes Generalization of Movement Learning
نویسندگان
چکیده
Over the past few decades, one of the most salient lifestyle changes for us has been the use of computers. For many of us, manual interaction with a computer occupies a large portion of our working time. Through neural plasticity, this extensive movement training should change our representation of movements (e.g., [1-3]), just like search engines affect memory [4]. However, how computer use affects motor learning is largely understudied. Additionally, as virtually all participants in studies of perception and actions are computer users, a legitimate question is whether insights from these studies bear the signature of computer-use experience. We compared non-computer users with age- and education-matched computer users in standard motor learning experiments. We found that people learned equally fast but that non-computer users generalized significantly less across space, a difference negated by two weeks of intensive computer training. Our findings suggest that computer-use experience shaped our basic sensorimotor behaviors, and this influence should be considered whenever computer users are recruited as study participants.
منابع مشابه
Generalization of dynamics learning across changes in movement amplitude.
Studies on generalization show the nature of how learning is encoded in the brain. Previous studies have shown rather limited generalization of dynamics learning across changes in movement direction, a finding that is consistent with the idea that learning is primarily local. In contrast, studies show a broader pattern of generalization across changes in movement amplitude, suggesting a more ge...
متن کاملImitating Object Movement Skills with Robots – A Task-Level Approach Exploiting Generalization and Invariance
This paper presents an architecture for learning and reproducing movements with a robot in interaction with a human teacher. We focus on the movement representation and propose three enhancements to increase generalization capabilities: Firstly, we introduce a flexible task-level movement representation that is based on neuropsychological findings. Movement is represented in task-oriented frame...
متن کاملTwo Novel Learning Algorithms for CMAC Neural Network Based on Changeable Learning Rate
Cerebellar Model Articulation Controller Neural Network is a computational model of cerebellum which acts as a lookup table. The advantages of CMAC are fast learning convergence, and capability of mapping nonlinear functions due to its local generalization of weight updating, single structure and easy processing. In the training phase, the disadvantage of some CMAC models is unstable phenomenon...
متن کاملFacial Expression Recognition Based on Structural Changes in Facial Skin
Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...
متن کاملUtilizing Generalized Learning Automata for Finding Optimal Policies in MMDPs
Multi agent Markov decision processes (MMDPs), as the generalization of Markov decision processes to the multi agent case, have long been used for modeling multi agent system and are used as a suitable framework for Multi agent Reinforcement Learning. In this paper, a generalized learning automata based algorithm for finding optimal policies in MMDP is proposed. In the proposed algorithm, MMDP ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 24 شماره
صفحات -
تاریخ انتشار 2014